If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(w-6)(w-6)=2w^2-10w+12
We move all terms to the left:
(w-6)(w-6)-(2w^2-10w+12)=0
We get rid of parentheses
-2w^2+(w-6)(w-6)+10w-12=0
We multiply parentheses ..
-2w^2+(+w^2-6w-6w+36)+10w-12=0
We get rid of parentheses
-2w^2+w^2-6w-6w+10w+36-12=0
We add all the numbers together, and all the variables
-1w^2-2w+24=0
a = -1; b = -2; c = +24;
Δ = b2-4ac
Δ = -22-4·(-1)·24
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-10}{2*-1}=\frac{-8}{-2} =+4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+10}{2*-1}=\frac{12}{-2} =-6 $
| (2h)^2+140=180 | | 4−4n=10−5n | | (w-5)(w-5)=2w^2-18w+40 | | 4x^2-0.6x=0 | | 6x+52=80 | | v^2-20v+78=3 | | -8=x÷2+-3 | | 3x-19=x+31 | | 2(x-3)^2-9=279 | | .7e−4=31 | | 150=-5p+10 | | (7x+20)+(3x+92)=180 | | 48=-x/2 | | 7x+20=3x+112 | | -43=3x+5 | | -(2x+8)=-14 | | 6x+12=3×+63 | | 6x+12+3×+63=180 | | -4(5+x)=44 | | v+5v=12 | | 4t+6=74 | | 10=8y-6y | | 6x-18=14x-18 | | p^2+10p-43=4 | | 0.3x+0.5=0.5x-0.7 | | (2-((5/(3x-7))=2 | | 4z/9+5=6 | | -30*x=-120 | | 10a^2-20a-39=-9 | | 9x-6=9(x+8) | | 3x-9+5x-25=180 | | 2(x-2)^2+6=0 |